Launch Slideshow

The maximum cone size was based on the largest available sheet of aluminum, and each piece was laser cut before being formed into the three-dimensional form.

Award: Shadow Pavilion

Award: Shadow Pavilion

  • The maximum cone size was based on the largest available sheet of aluminum, and each piece was laser cut before being formed into the three-dimensional form.

    http://www.architectmagazine.com/Images/tmp7BE2%2Etmp_tcm20-565427.jpg

    true

    The maximum cone size was based on the largest available sheet of aluminum, and each piece was laser cut before being formed into the three-dimensional form.

    600

    Courtesy PLY Architecture

    The maximum cone size was based on the largest available sheet of aluminum, and each piece was laser cut before being formed into the three-dimensional form. These cones were then grouped in subassemblies that were transported to the site where the pavilion was assembled. The cones on the bottom row were built to be filled with gravel and sealed, weighing down the structure and preventing uplift from winds on the site.

  • Striving for material efficiency, the team conducted geometric studies to identify the ideal angle and depth of the cones.

    http://www.architectmagazine.com/Images/tmp7BE8%2Etmp_tcm20-565433.jpg

    true

    Striving for material efficiency, the team conducted geometric studies to identify the ideal angle and depth of the cones.

    600

    Courtesy PLY Architecture

    Striving for material efficiency, the team conducted geometric studies to identify the ideal angle and depth of the cones. The first set of studies (left) determined that the most efficient use of aluminum sheets resulted in a 60-degree cone. The second series of studies (right) investigated the material usage of various depths of cones, which then had to be weighed against the effect on light transmittance into the pavilion.

  • The team investigated different grid configurations, including a hexagonal grid (top) based on phyllotaxis, and a square grid (middle).

    http://www.architectmagazine.com/Images/tmp7BE1%2Etmp_tcm20-565426.jpg

    true

    The team investigated different grid configurations, including a hexagonal grid (top) based on phyllotaxis, and a square grid (middle).

    600

    Courtesy PLY Architecture

    The team investigated different grid configurations, including a hexagonal grid (top) based on phyllotaxis, and a square grid (middle). The hexagonal grid won out because it offered more flexibility (with two additional connection points per cone), but through geometric modeling, the team determined that regardless of the grid pattern, the axes were similar for various shapes being explored (bottom).

  • Scripting was used to help generate better understanding of the complex geometries and forces involved in the structure.

    http://www.architectmagazine.com/Images/tmp7BE6%2Etmp_tcm20-565431.jpg

    true

    Scripting was used to help generate better understanding of the complex geometries and forces involved in the structure.

    600

    Courtesy PLY Architecture

    Scripting was used to help generate better understanding of the complex geometries and forces involved in the structure. Placing cones over a predetermined curved field helped the team to identify the connection points that give the double-layered surface of cones its strength, and to determine guide geometry that helped in modeling the ideal height of the cones. This ensured that the structure would be self-supporting and withstand any wind loads thrown at it.

  • Rhino Script

    http://www.architectmagazine.com/Images/tmp7BE5%2Etmp_tcm20-565430.jpg

    true

    Rhino Script

    600

    Courtesy PLY Architecture

    Rhino Script

  • In order to achieve variation with something as static as a grid, the team looked to rotating the grid around different points and axes to change the form.

    http://www.architectmagazine.com/Images/tmp7BE9%2Etmp_tcm20-565434.jpg

    true

    In order to achieve variation with something as static as a grid, the team looked to rotating the grid around different points and axes to change the form.

    600

    Courtesy PLY Architecture

    In order to achieve variation with something as static as a grid, the team looked to rotating the grid around different points and axes to change the form. By experimenting with vertical or slightly canted horizontal axes, the team was able to make the grid shift, bend, and twist in ways that informed the final geometry of the pavilion.

  • This section shows the relationship between the height of the pavilion and the height of the average visitor, an important consideration in designing a public space.

    http://www.architectmagazine.com/Images/tmp7BE4%2Etmp_tcm20-565429.jpg

    true

    This section shows the relationship between the height of the pavilion and the height of the average visitor, an important consideration in designing a public space.

    600

    Courtesy PLY Architecture

    This section shows the relationship between the height of the pavilion and the height of the average visitor, an important consideration in designing a public space. By requiring visitors to step up and over a threshold to enter the space—and by sloping down to meet the ground at the rear of the structure—the pavilion creates a series of carefully framed views for people of different statures, both through the entry and through the apertures in the metal cones.

  • The reflectivity of the aluminum cones picks up the colors of the pavilion's environment.

    http://www.architectmagazine.com/Images/tmp7BE7%2Etmp_tcm20-565432.jpg

    true

    The reflectivity of the aluminum cones picks up the colors of the pavilion's environment.

    600

    Courtesy PLY Architecture

    The reflectivity of the aluminum cones picks up the colors of the pavilion's environment. But the geometry of the cones themselves creates an interesting visual trick. The lower curve of each piece reflects the sky, and the upper curve reflects the ground plane, creating an inverse relationship with the surrounding landscape.

The Shadow Pavilion is both a structure and a space made entirely of holes. The surface of the pavilion, which is installed at the Matthaei Botanical Gardens at the University of Michigan, is made of 100-plus, laser-cut cones that vary in size. Beyond testing the limits of sheet aluminum, the cones funnel light, moisture, and sound to the interior space.

Yet the outcome seems almost beside the point: It was the process that most intrigued the jury. The design team, led by Karl Daubmann, a principal of PLY Architecture in Ann Arbor, Mich., and an associate professor at the University of Michigan, conducted an exhaustive study of geometric patterns and presented them compellingly in what juror Cristobal Correa called “a tight little book.” In addition to admiring the project’s formal investigations, the jury lauded the submission for embracing materials testing.

Drawing analogies from botany—specifically, the study of phyllotaxis, the arrangement of leaves—the underlying research set out to give material and process the upper hand, letting form emerge as the secondary result of experimentation. The team decided to work with aluminum because its low cost allowed for repeated study of different shapes and sizes. An abundance of local shops equipped with cutting technologies also aided that choice.

Early studies of circles and cones progressed quickly to complex three-dimensional plots. Shadow studies examined the effects of changes in the cone angle, depth, and arrangement. Additional exercises involved Rhino-scripting the cones onto a predetermined surface to analyze strength-giving connection points. To minimize waste, the team looked at which cone shapes (flat vs. steep) made the most efficient use of the material.

Initially, the jury regarded the project as mere sculpture—form, but no function. “But I like that it’s additive,” juror Frank Barkow said. “And the cone has a certain multitasking quality where it conditions the light. At the same time, it doesn’t require an extraneous structural system to hold it up.”